A semi-empirical approach for quantifying $H_2S(g)$ emission rates in gravity sewers

O. Lahav, Y. Lu*, U. Shavit, E. Friedler, R.E. Loewenthal*

* Department of Civil Engineering, University of Cape Town, Rondebosch, South Africa

International Conference on Sewer Operation and Maintenance SOM2002, University of Bradford, UK, 2002

A semi-empirical approach for quantifying $H_2S(g)$ emission rates in sewers is presented. Hydrogen sulphide emission kinetics as a function of hydraulic parameters were measured in the laboratory using methods adopted from flocculation theory. A flocculation unit was used to impart selected velocity gradients (G) into the water, and sulphide concentrations were measured with time. Regression analysis was used to fit the emission rate equation against G. Following this, G was linked to head loss in sewers. Finally, the hydraulic and kinetic models were linked (via G) to derive an equation for the hydrogen sulphide emission rate along a sewer line.

The model can be used to predict $H_2S(g)$ emission in sewers under uniform flow conditions, and the effects of parameters such as pH, sewer slope and proportional depth can be calculated. An example of a theoretical run obtained for constant slope and pH while varying the proportional depth is given. The model was developed for a straight-line flow; a correction can be adopted for bends and other local head losses.