Simple sequence repeats (SSRs) often serve to modify genes with which they are associated. The influence of SSRs on gene regulation, transcription and protein function typically depends on the number of repeats, while mutations that add or subtract repeat units are both frequent and reversible. SSRs thus provide a prolific source of quantitative and qualitative variation. Over the past decade, researchers have found that this spontaneous variation has been tapped by natural and artificial selection to adjust almost every aspect of gene function. These studies support the hypothesis that SSRs, by virtue of their special mutational and functional qualities, have a major role in generating the genetic variation underlying adaptive evolution.

Introduction

Simple sequence repeats (SSRs, also called microsatellites and minisatellites; see Glossary) are mutation-prone DNA tracts composed of tandem repetitions of relatively short motifs. Although SSRs are commonly regarded as ‘junk’ (i.e. with no significant role as genomic information), evidence for many molecular and phenotypic effects of SSR repeat-number variation has lent support to the hypothesis that SSRs could have a positive role in adaptive evolution [1–22]. From an evolutionary perspective, the properties of these remarkable sequences (Box 1) confer virtually ideal ‘mutator’ properties. SSR instability can be indirectly advantageous by supplying abundant quantitative genetic variation with minimal genetic load, while variations in repetition purity and motif length enable site-specific adjustment of both mutation rate and mutation effect.

In this article, we highlight positive evidence from recent reports that support an evolutionary role for SSRs as important sources of adaptive genetic variation, both within and between species. In contrast to many other studies that simply demonstrate effective functional differences between ‘normal’ and ‘mutant’ SSR alleles, these examples offer evidence that common SSRs alleles can offer potential selective advantages. We provide an overview of the molecular basis for the functional effects of SSRs in both coding and non-coding domains and a brief consideration of the evolutionary benefit for SSR mutability.

Temperature compensation of circadian rhythm in Drosophila

The first thoroughly documented eukaryotic example, with evidence not only for quantitative phenotypic effects.
of repeat-number alleles but also for natural selection acting on those alleles, came from an investigation by Sawyer et al. of the clock gene period (per) in Drosophila melanogaster [23]. This gene contains an SSR with a variable-length repeating hexanucleotide motif encoding threonine and glycine. Of the two most common alleles of this gene, at warm temperature the shorter (Thr-Gly)\textsubscript{17} allele yields a circadian period closer to 24 hours, whereas the longer (Thr-Gly)\textsubscript{20} variant yields better temperature compensation so that temperature fluctuations have a lesser impact on circadian cycle. Across Europe and Northern Africa, the frequencies of these two alleles have a significant latitudinal cline, with the longer allele predominating in colder regions. Such a pattern is to be expected if these alleles were selected by climate, based on the differential temperature sensitivity that they confer [23].

Additional evidence has recently come from the ‘Evolution Canyon’ ecological study site at Mount Carmel in Israel. This canyon presents a dramatic microclimatic contrast, with the sunny, south-facing slope experiencing greater temperature and drought stress than the north-facing slope. Here, biotic differences occur between ecological zones separated by only 100 m at the bottom and 400 m at the top. The longer, cold-climate allele of the Drosophila per gene was more than twice as abundant on the cooler, north-facing slope than it was on the warmer, sunny slope, supporting the conclusion that natural selection of these microsatellite alleles ‘fine-tunes’ the Drosophila circadian clock to differing environmental conditions [24].

Adaptive divergence in barley and wheat populations

The ‘Evolution Canyon’ site has also furnished much more extensive evidence that ecological (i.e. fitness-related) parameters affect SSR allele frequencies in a natural setting. Analysis of 19 nuclear and four chloroplast microsatellite loci in seven populations of wild barley (Hordeum spontaneum) distributed across the north- and south-facing slopes of the canyon has revealed significant inter-slope differentiation of SSR allele frequencies [25]. Similarly, analysis of 20 microsatellites in 15 emmer wheat populations (Triticum dicoccoides) at sites in Israel and Turkey also yielded SSR allele distribution patterns that correlate with physical conditions [26]. These results indicate that the frequencies of both coding and noncoding SSR alleles have been shaped by natural selection acting through microclimatic factors. Because the specific roles of SSRs in these grasses (and those of most SSRs) are unknown, conclusive evidence that SSRs are being selected (rather than hitchhiking with selected alleles) will require further research.

Social behavior in voles

Direct experimental evidence that allelic variation at an SSR locus is intimately involved in phenotypic variation at the interspecies and at the individual level has recently been provided by Hammock and Young’s elegant study of social behavior in voles [18,27]. Prairie and pine voles (Microtus ochrogaster and Microtus pinetorum) are highly social, monogamous rodent species, whereas montane and meadow voles (Microtus montanus and Microtus pennsylvanicus) are asocial and not monogamous. These differing social behaviors depend on the pattern of expression of the vasopressin receptor (encoded by avpr1a), with greater levels of expression in the ventral forebrain of the social voles. (Increasing the expression of this gene, using viral vector transfer into the ventral pallidum, can increase partner preference behavior in a normally non-monogamous species [28].) Although the protein-coding region of avpr1a is highly conserved among voles, the two social species have a long, compound SSR in the 5’ regulatory region of this gene, much of which is absent in the two asocial species. (Interestingly, bonobos (Pan paniscus) and humans, two primate species characterized by high
empathic and sexual bonding, also share a highly homologous SSR-rich tract upstream of *avpr1a*, whereas the corresponding sequence of the less-empathic chimpanzee (*Pan troglodytes*) presents a substantial deletion of this region [27].

Experiments that transfected two versions of the SSR locus from social and asocial species into cultured rat cells showed that the species divergence in SSR lengths at this locus is sufficient to alter expression of *avpr1a* in a manner that is dependent on cell type. A transgenic mouse containing the social species’ version of the SSR locus displayed gene expression patterns and behaviors in response to experimental vasopressin injection that were more like those of the social species than those of the wild-type mouse [29]. Furthermore, the long, compound SSR locus of prairie voles also varies in repeat number among different animals. When two different alleles from this social species were transfected into rat A7r5 cells, while holding constant the rest of the regulatory region, the allele with an expanded GA repeat yielded greater levels of gene expression. When individual prairie voles were selectively bred for longer and shorter alleles of this polymorphic SSR, the ‘fine-tuning’ effect of this polymorphic SSR was demonstrated by correlation of repeat length with quantitative differences both in the distribution of the vasopressin receptor in individual brains and also in individual social behavior – males with longer alleles had a ‘greater probability of social engagement and bonding behavior’ [27].

Such effects of SSR repeat number on cell-type-specific gene expression in culture together with the correlation of SSR repeat length with social behavior and gene expression in intact animals support a strong presumption that SSR variation, mediated through expression of the gene encoding the vasopressin receptor, is at least partially responsible for both individual and interspecies variation in social behavior phenotypes in voles.

Skeletal morphology in domestic dogs

A different type of evidence, showing that variation generated by SSRs can supply the raw material for evolutionary divergence in phenotype, has recently been provided by Fondon and Garner’s [17] analysis of 92 breeds of domestic dogs (*Canis lupus familiaris*).

When Fondon and Garner examined 17 genes known to influence morphological traits, they found ‘only a few silent SNPs’. By contrast, they found that these 17 genes had ‘extraordinary levels of tandem repeat variation’, with a polymorphism in almost every gene examined. Furthermore, the exceptional purity of repetition in these morphogenetic genes, in contrast to less-perfect repeats at other sites, suggests that diversifying selection has followed purifying mutational slippage too recently to permit the accumulation of new point mutations.

Although the function of most of the observed SSR polymorphism remains unknown, Fondon and Garner [17] found that the length ratio of two adjacent SSRs in the runt-related transcription factor *Runx-2*, encoding 18–20 glutamines followed by 12–17 alanines, was correlated with measures of facial shape across breeds. In humans, the homologous *CBFA1* gene, which encodes osteoblast-specific transcription factor OSF2, is known to influence craniofacial structure, and an expansion of the alanine stretch from 17 to 27 has been found in members of one family who have cleidocranial dysplasia [30]. Fondon and Garner also found that in Great Pyrenees, a dog breed characterized by polydactyly, the presence of extra toes was consistently linked with a 51-bp contraction of a hexanucleotide repeat in *Alx-4*, a gene previously associated with polydactyly in mice.

This evidence strongly suggests that genetic variation supplied by SSRs is at least partially responsible for phenotypic differences among dogs within the same breed and for morphological divergence among dog breeds. Although the traits that distinguish dog breeds have been shaped by human breeders, there is no reason to suppose that artificial selection draws on a source of variation any different from that which sustains natural selection.

Sporulation efficiency and cell adhesion in yeast

A recent study of quantitative trait loci controlling sporulation efficiency in a cross of two differing strains of budding yeast (*Saccharomyces cerevisiae*) identified RAS2 (a homologue of the RAS proto-oncogenes) as one of the genes affecting this trait (G. Ben-Ari, PhD Thesis, The Hebrew University of Jerusalem, 2005). The promoter regions of the high- and low-efficiency alleles were distinguished by the presence of A9 and A10 poly-A tracts, respectively. Replacement of the original RAS2 allele in a laboratory yeast strain (S288c) by the corresponding longer allele, using ‘knock-in’ technology, reduced sporulation efficiency from 17.1% to 0.7%. In a parallel study of ten wine-yeast strains, found to be almost genetically identical and characterized for sporulation efficiency, the A9 tract was found in six strains with sporulation efficiencies of 15–55%, whereas the A10 tract was found in four strains that did not sporulate. These results strongly implicate this mononucleotide-repeat polymorphism as a causal basis for differentiation in sporulation efficiency, a significant life-history trait for yeast. More generally, a regulatory role for mononucleotide SSRs could be important, because mononucleotide repeats comprise the most numerous class of SSRs in most genomes [31–33].

Much longer repeats (minisatellites) have also been investigated in *S. cerevisiae*, where they seem to occur predominantly in genes encoding cell-surface proteins involved in cell adhesion and flocculation [34]. These genes have substantial in-frame repeat-number variation among yeast strains, with the frequency of repeat-number mutations being dependent on several *RAD* genes, which are involved in nucleotide excision repair. Experimental manipulation of repeat length has demonstrated a linear correlation between repeat number and the extent of cell adhesion. Variation in repeat length thus seems capable of permitting gradual and fully reversible functional changes, in turn enabling rapid evolutionary adaptation to particular environments [34].

Repeat-related diseases in humans

Allelic differences in the number of SSR repeats are known to cause a wide range of hereditary disorders and
Molecular basis for adaptive effects of SSRs

The studies described here highlight the potential adaptive significance of variation generated by SSRs. Documenting the functional effects of SSR alleles remains challenging, however, even when they appear within genes whose functions have been established, such as fruit fly per, vole avpr1a, dog Alx-4 and yeast Ras2. Ideally, an incremental effect of repeat number should be demonstrated over a range of quantitative phenotypic differences. Although a few studies have provided data from multiple alleles (e.g. Refs [4,17,34]), and the severity of triplet repeat diseases is dependent on repeat number, many more examples report effect differences between two alleles only. Nevertheless, current evidence indicates that the number of repeats in many different SSRs can affect gene function in several ways.

Triplets (i.e. individual codons) comprise, by far, the most common motif length for SSRs located within protein-coding domains [31,32,38,39]. Triplet repeats are particularly common in genes encoding transcription factors [4,6,13,15,35,40,41]. A variation in the number of repeated codons results in a variation in the length of homopolymeric stretches of amino acid that, in turn, can affect properties such as protein flexibility and binding affinity. Examples associated with human triplet repeat diseases are the most-thoroughly studied, with literature too extensive to review here (e.g. Refs [6,15,22,35]). Motif lengths that are multiples of three are also common. For example, many eukaryotic structural- and cell-surface proteins seem to have evolved by repeat expansion of minisatellites, with each motif encoding an oligopeptide [34,42,43].

SSRs with motif lengths that are not multiples of three base pairs can also encode protein segments. Although such SSRs have not received nearly as much attention as triplet repeats, they are nevertheless found in many genes. Mutations that change the number of repeats in coding non-triplet SSRs cause frameshifts, which can effectively inactivate gene expression or encode different or shorter protein sequences in the alternative form. Because frameshifting based on SSR mutation is readily reversible by subsequent mutation, such SSRs can function as on–off switches for their genes. Although this SSR effect can cause cancer [44], some bacteria apply it in ‘contingency genes’ to control the variable expression of surface antigens [14,45]. Nontriplet (mononucleotide) repeats are also exceptionally prevalent in the coding regions of minor mismatch-repair-system genes of many eukaryotes [46], where repeat number variation would permit mutation rates to be modulated over evolutionary time.

Another intriguing possibility for SSR-based gene switching is suggested by a short poly-C tract in MC1R, which encodes a melanocortin receptor expressed in pig melanocytes. Frameshifting caused by germ-line addition of an extra C in this SSR leads to loss of pigmentation; subsequent somatic cell reversions to the original tract length occur at relatively high frequency during skin development, creating a pattern of black spots [47]. A similar mechanism could usefully generate somatic cell variety during embryogenesis of other tissues.

Effects of coding SSRs can be surprisingly sophisticated. As noted previously, Runx-2, analyzed by Fondon and Garner, contains a compound repeat in which the

Box 2. Some examples of non-coding effects of SSRs

Transcription factor binding

The first intron of the gene encoding human epidermal growth factor includes an AC repeat that influences transcription activity both in vivo and in vitro [56]; a polymorphic TCAT repeat in the first intron of the human tyrosine hydroxylase gene binds a zinc finger transcription factor (ZNF191) [57]. In both cases, effects are quantitatively correlated with the number of repeats. Milk fat production in Holstein dairy cattle (Bos taurus) correlates with the number of 18-bp repeats, each containing a potential transcription-factor-binding site, in the promoter for an enzyme regulating triglyceride synthesis [58].

RNA shape

Hairpin folds of RNA transcribed from trinucleotide CTG repeats in the 3' UTR of the myotonic dystrophy protein kinase gene bind to and activate the dsRNA-activated protein kinase [59]. A variable TG repeat in the cystic fibrosis transmembrane conductance regulator gene (CFTR) alters the efficiency of exon splicing [60].

DNA structure and packaging

ACn or ATn repeats can form Z-DNA [1,61], and repeats of several types can influence nucleosome formation [62,63].

DNA length and orientation

In any regulatory region, SSR mutations that change repeat number will necessarily change the length of the DNA in that region, thereby rotating the flanking sequences and altering the local spatial relationships of transcription factor interactions.
length ratio of two adjacent SSRs correlates with facial shape much more strongly than does the length of either repeat alone. This suggests that precise modulation of transcription by Runx-2 could be facilitated by the pairing of repeats with opposite activities [17]. In effect, a compound SSR seems to represent the functional equivalent of a micrometer in which two relatively coarse screws of slightly different pitch work in opposite directions to allow finer adjustment than could be attained with either screw by itself.

SSRs effects are not limited to coding sequences. Repeat variation commonly exerts a functional influence on DNA structure and transcription activity, even when the SSRs are located in introns or other noncoding sites where they do not affect protein structure directly. Examples of several such SSR effects are given in Box 2. Additional examples are reviewed elsewhere (e.g. Refs [16,19–22]).

Three basic principles extend through all this diversity. First, whatever role an SSR has within a gene, whether coding or noncoding, within transcripts or regulatory sequences, changing the number of repeats can modulate its genetic function. Second, mutations that alter repeat number typically occur at rates orders of magnitude greater than single-nucleotide point mutations. Third, the mutation rates associated with SSR sites are influenced, among other factors, by site-specific features including motif length, number of repeats and purity of repetition [35,48–51].

Evolutionary utility of SSRs

Any genomic variable that routinely affects genetic function must surely have also an evolutionary role. It is time to abandon the presumption that SSRs are ‘junk DNA’ (Box 3). Our earlier proposal, that SSRs ‘provide a ready and virtually inexhaustible supply of new

Box 3. Correcting some misconceptions about SSRs

SSRs are not just genetic ‘junk’

The repetitiveness and mutability which once suggested that SSRs could not be serving any critical function are the features that make SSRs useful. The genetic ‘meaning’ of a specific SSR allele, whether as a coding sequence or an in cis relation to a coding sequence, resides not only in its motif sequence and repeat number, which together represent a particular quantitative effect, but also in repetitiveness itself [2]. Repetition, by conferring mutability, represents the ability of an SSR to vary reversibly in subsequent generations.

SSR alleles are not always adaptively neutral

SSR alleles are commonly analyzed with the presumption that mutational processes and genetic drift determine allele frequencies. Although this might often be an appropriate null hypothesis, the possibility of adaptively relevant function should be explicitly recognized and tested. In natural populations, the most frequent SSR alleles have already been winnowed by selection and are thus expected to fall within a range where fitness differences might not be noticeable. Nevertheless, adaptively significant effects can readily emerge as ongoing mutation yields variants whose length falls outside this currently favored range.

SSR sites with functional effects are not just rare exceptions

The relevant literature is dispersed across many disciplines, with many studies focused not on SSRs per se but on the functions of particular genes or the genomic bases for particular phenotypes. Repeat number variants of mononucleotide repeats are often reported as SNPs (i.e. single base pair indels) rather than SSR alleles.

Functional effects of SSR mutability are not always harmful

A commonplace prejudice that mutation must, on average, be predominantly deleterious appears to be reinforced by the association of certain SSRs with human disease. But these are exceptions. Disease associations receive disproportionate attention but they clearly represent pathological aberrations of normal SSR function. SSR variation within a normal (i.e. non-pathological) range of repeat number commonly yields small, quantitative functional effects.

Evolutionary theory does not prohibit selection favoring mutability

The classic argument that natural selection necessarily minimizes mutation rates is based on assumptions that do not apply to SSRs [12,20,52]. Indirect selection for mutability is unlikely to occur unless special circumstances obtain [64] but appropriate special circumstances are exactly what SSRs provide. Widespread prevalence and evolutionary conservation of mutable SSR sites imply that at least some SSRs have been retained because their mutability yields advantageous variation [12,20,52].

Box 4. Outstanding questions

- In association tests of candidate genes, when specific SSR alleles consistently correspond with particular trait values, could the trait differences be caused by the SSRs themselves? Positive evidence that SSR alleles are responsible should include experimental testing of alternative SSR alleles, preferably more than two, against a controlled genetic background (e.g. by genetic knock-in). Alternatively, extensive sequencing is needed to demonstrate the absence of any other associated polymorphism.
- What is the quantitative relationship between phenotypic variation and the number of repeats in a corresponding SSR? This question can only be addressed by measuring the incremental effects of repeat-number alleles representing three or more different lengths.
- To what extent do SSRs contribute to adaptive divergence among populations? Innumerable studies, not reviewed here, have reported differentiation of SSR allele frequencies among natural populations and species. Although such alleles are usually presumed to be neutral, the possibility of small but appreciable fitness differences needs to be explicitly tested [65].
- To what extent is SSR function regulated by other aspects of the genome? Evidence that other genetic elements have adapted to accommodate and regulate the mutability of SSRs would strongly support a positive evolutionary role for SSRs. Such evidence is already available for bacteria; moreover, the regulating mismatch repair elements contain SSRs that allow their own adjustment [46,52].
- Is the mutability of particular SSRs adjusted by indirect selection? Selective retention of a favorable SSR allele necessarily preserves the repeat-based mutability by which it arose. But when allele stability is beneficial, single base pair substitutions can stabilize the SSR by reducing the purity of repetition. For example, the repeat sequence in the longer and more frequent allele of a human tyrosine hydroxylase gene is interrupted by single nucleotide deletion, which presumably discourages further expansion [57].
- Can the mutability of particular SSRs be induced by stress conditions? A stress-inducible increase in mutation rate, specifically directed to SSR loci, could ‘adjust’ the fitness of individual cells. Oxidative stress can destabilize microsatellites in prokaryotes [66]. One preliminary report suggests that targeted SSR mutations are elicited by fungal infection in plants [67].
- Does SSR mutation have a role during the life span of individual organisms? The intriguing example of somatic SSR mutation causing a pattern of black spots in pigs (see main text) suggests that the mutability of SSRs has a role generating cellular diversity during normal development.
quantitative variation for rapid evolutionary adaptation’ [7] has been echoed by Fondon and Garner’s recent hypothesis that ‘gene-associated tandem repeats function as facilitators of evolution, providing abundant, robust variation and thus enabling extremely rapid evolution of new forms’ [17].

A metaphorical characterization of SSRs as ‘evolutionary tuning knobs’ [8,21] expresses the potential of each SSR to facilitate the efficient adaptive adjustment of a quantitative trait. But the sheer number of SSRs is staggering. The human genome contains close to a million mononucleotide repeats that are longer than 9 bp; longer motifs account for many more SSR sites [33]. If even a small proportion of these diverse SSRs are functionally active, their high mutability implies that the quantitative genome is in a constant state of ‘mutational ferment’. Indeed, we believe not only that SSRs contribute adaptively significant variation but also that provision of such variation might be the evolved ‘function’ of SSRs. That is, indirect selection can encourage the presence of numerous SSR tracts in the genome and endow these tracts with their special mutator properties [8,12,20,52] (Box 1).

Concluding remarks
In a changeable world, long-term stability of fitness is found in the adaptive variation that mutability provides. Implicit in the genome are many ‘ingenious and unexpected mechanisms’ or ‘protocols’ [53,54], for regulating, modifying and restructuring genetic information with minimal risk to ongoing adaptation. The quantitative adjustment and on–off switching provided by site specific mutation of SSRs might be one of the simplest of these protocols, but it might also be one of the most widespread and powerful means of providing genetic variation for evolution. This hypothesis raises several questions (Box 4) that should be addressed by direct experiment and comparative analysis of genome sequence data.

Acknowledgements
We thank the referees for pertinent and insightful advice, especially John Fondon III for calling attention to the importance of data from multiple repeat-number alleles at any given ‘tuning knob’ locus.

References
3 Kashi, Y. et al. (1990) Large restriction fragments containing poly-TG are highly polymorphic in a variety of vertebrates. Nucleic Acids Res. 18, 1129–1132
7 Kashi, Y. et al. (1997) Simple sequence repeats as a source of quantitative genetic variation. Trends Genet. 13, 74–78
8 King, D.G. et al. (1997) Evolutionary tuning knobs. Endeavour 21, 36–40
10 Nakamura, Y. et al. (1998) VNTR (variable number of tandem repeat) sequences as transcriptional, translational, or functional regulators. J. Hum. Genet. 43, 149–152
13 Young, E.T. et al. (2000) Trinucleotide repeats are clustered in regulatory genes in Saccharomyces cerevisiae. Genetics 154, 1053–1068
26 Fahima, T. et al. (2004) Differential distribution of simple sequence motifs account for many more SSR sites [33]. If even a small proportion of these diverse SSRs are functionally active, their high mutability implies that the quantitative genome is in a constant state of ‘mutational ferment’. Indeed, we believe not only that SSRs contribute adaptively significant variation but also that provision of such variation might be the evolved ‘function’ of SSRs. That is, indirect selection can encourage the presence of numerous SSR tracts in the genome and endow these tracts with their special mutator properties [8,12,20,52] (Box 1).

Concluding remarks
In a changeable world, long-term stability of fitness is found in the adaptive variation that mutability provides. Implicit in the genome are many ‘ingenious and unexpected mechanisms’ or ‘protocols’ [53,54], for regulating, modifying and restructuring genetic information with minimal risk to ongoing adaptation. The quantitative adjustment and on–off switching provided by site specific mutation of SSRs might be one of the simplest of these protocols, but it might also be one of the most widespread and powerful means of providing genetic variation for evolution. This hypothesis raises several questions (Box 4) that should be addressed by direct experiment and comparative analysis of genome sequence data.

Acknowledgements
We thank the referees for pertinent and insightful advice, especially John Fondon III for calling attention to the importance of data from multiple repeat-number alleles at any given ‘tuning knob’ locus.

References
3 Kashi, Y. et al. (1990) Large restriction fragments containing poly-TG are highly polymorphic in a variety of vertebrates. Nucleic Acids Res. 18, 1129–1132
7 Kashi, Y. et al. (1997) Simple sequence repeats as a source of quantitative genetic variation. Trends Genet. 13, 74–78
8 King, D.G. et al. (1997) Evolutionary tuning knobs. Endeavour 21, 36–40
10 Nakamura, Y. et al. (1998) VNTR (variable number of tandem repeat) sequences as transcrip...
Opinion

ESF-EMBO symposium

Gene Transcription in Yeast

Sant Feliu de Guixols, Spain, 24–29 June 2006

Chair: Jane Mellor (Oxford University, UK)
Vice-Chair: Martine Collart (Geneva University, CH)

Invited speakers will include:

For more information, see www.esf.org/conferences/ic06212